近源渗透测试 pdf-近源渗透测试pdf

hacker|
197

渗透测试-SSH秘钥登录

最近渗透遇到许多linux服务器,在多方信息收集无果后,想到了ssh的秘钥登录。但诸多知识点有点混乱,趁此时间再次复现一遍。

ssh中文名称叫安全外壳协议,是一种加密的网络传输协议。我们现在经常说的ssh指的是openssh,是对ssh协议的实现。

我们都知道ssh提供了两种安全级别的认证,一种口令认证,一种秘钥认证。

基于口令的认证时需要输入正确的用户名和密码,且连接加密。

ssh的连接过程为:

这里指的就是无法确定host的真实性,只知道它的公钥指纹。问你是否连接,

yes后就需要远程服务端的用户密码。密码输入正确后才可以登录。

当远程服务端的公钥被接受以后,就会保存在当前用户的/.ssh/known_hosts之中。下次再连接这台主机时,系统就会知道公钥已经保存在本地了,从而跳过警告部分,直接提示输入密码。

现在企业更流行使用秘钥登录。修改远程服务端的 /etc/ssh/sshd_config 配置文件,

重启sshd服务,就可以禁用密码验证。

ssh秘钥登录,其实就是"公钥登录",首先需要用户自己生成一对公钥和私钥。然后用户将自己的公钥放在远程服务端上。此时远程服务器持有公钥,用户持有私钥。满足"公钥加密,私钥解密"。

过程如下:

该命令用于生成秘钥对。

需要注意的是:

生成后可以在当前用户的.ssh文件夹下看到。

ssh-copy-id 命令将公钥写到远程服务端kali的test用户下的/.ssh/authorized_key文件中。

如果是第一次登录,用户也会在/.ssh/文件夹下创建known_hosts,记录了远程服务端的ip和对应的公钥指纹。

连接时默认去查找当前用户/.ssh/文件下是否存在私钥,如果没有需要指定私钥进行连接。

如果设置了证书的密码,则在远程服务器时需要输入密码。

在 /etc/hosts 可以配置主机名和IP地址

此时就可以直接ssh主机名。

当渗透测试拿到一台linux服务器,查找/.ssh/文件夹下是否存在私钥文件,或*.pub文件,因为私钥和公钥一块生成。结合known_hosts文件,可以去连接未知的机器。

反之,如果拿到的机器只存在known_hosts文件,则无法利用。该文件只能说明曾经接收过公钥。

如果拿到的机器只有authorized_key文件,则证明存在用户连接过该机器。

近源渗透(2)

被动扫描

    客户端在每个信道上切换以监听AP周期性(100ms)发送的beacon帧,获得接入点的SSID(热点名称)、BSSID(AP的MAC地址)、所支持的速率。

主动扫描

    客户端在每个信道之间切换,并向广播地址(ff:ff:ff:ff:ff:ff)发送Probe Requests帧,一旦发送后就会启动一个计时器并等待响应,计时器结束后处理所有收到的应答。没有响应的话就切换至下一个信道重复以上过程。

    定向探测请求:发送的Probe Requests帧指定SSID,只有该SSID会应答;

    广播探测请求:发送的Probe Requests帧SSID的值为空,收到请求的所有热点都会响应。

监听模式

    非监听模式下,系统内核会将筛选后的802.11帧封装成普通的网络帧传递给上层;

    监听模式下,内核会直接将802.11帧直接传递给上层,在用户层直接通过接口就可得到原始数据包。

iwfonfig 命令

将wlan0设置为监听模式并设置信道为11

ifconfig wlan0 down

iwconfig wlan0 mode monitor

ifconfig wlan0 up

iwconfig wlan0 channel 11

iw 命令

iw命令是iwconfig的扩展,可以查看无线网卡接口名称、工作模式、信道等信息

iw dev wlan0 info

除此之外,iw命令还可以开启虚拟接口:

iw dev wlan0 interface add mon0 type monitor

ifconfig mon0 up

iw dev mon0 set channel 11

撤销命令

iw dev mon0 del

Airmon-ng(小写的airmon-ng是Airmon-ng工具中的一个组件)是一款常用的渗透测试及破解类工具之一,他包含了多款无线审计工具

使用airmon-ng start wlan0 开启监听模式

airodump-ng wlan0mon 抓包

其中包括两部分内容:

     上半部分:周边的热点信息

     下半部分:捕获到的无线客户端

    Kismet是一款802.11协议数据包捕获分析框架,额外支持无线帧的嗅探和破解、隐藏热点的发现 以及GPS和蓝牙扫描

    过滤规则:

筛选所有Beacon帧: wlan.fctype_subtype == 0x0008

筛选所有Probe Response帧: wlan.fctype_subtype == 0x0005

    出于安全考虑,许多的无线网络都会开启隐藏模式。在此模式下Beacon帧中将不包含SSID,也不在回复Broadcast Probe REquests帧。 合法的客户端想要连接,需要发送包含了热点名称的Directed Probe Requests帧。

    简单来说就是:必须知道热点的名称,才可以与隐藏模式下的热点建立连接

薄弱点

    合法的客户端想要连接,需要发送包含了热点名称的Directed Probe Requests帧

利用方式

1.抓包,等待合法用户连接

2.将合法用户从连接中“踢掉”,迫使他重新连接发起交互,抓包(deauth攻击)

总结

    隐藏热点并不能增加安全性,攻击者只是多个一个步骤而已。

针对docker系统的渗透测试方法

翻译总结于:《A Methodology for Penetration Testing Docker Systems》

    文章从两个攻击模型进行分析,结合错误配置和已知漏洞对docker渗透测试进行总结归纳,并给出了一份docker渗透测试检查清单。

    作者讨论了两种情况:在容器内和在容器外。在容器内部,攻击者会聚焦在逃逸隔离(即容器逃逸)。在容器外部,即宿主机上,攻击者还没有主机特权,这时候攻击者将会使用Docker(即Docker daemon攻击)来获得权限。

    容器逃逸重点在攻击和绕过隔离和保护机制,其中又可分成两种:一种是从容器逃逸到主机(CVE-2017-7308),另一种是从容器逃逸到另一个容器获取其中数据。

    作者从错误配置和安全漏洞两个角度对上述两个场景中的安全问题进行了梳理。漏洞问题是自身程序问题,错误配置更多的是用户使用问题。

    前两个错误配置与在主机上执行的Docker Daemon有关,其他错误配置与从容器内执行的容器逃逸攻击有关。

(2)可读写的Docker Socket:一些管理员设置了所有用户的读写权限,给了所有用户Docker Daemon的权限,尽管用户不在docker group也能使用docker。

(3)setuid bit:系统管理员在docker二进制文件上设置setuid位。setuid位是Unix中的权限位,它允许用户运行二进制文件而不是其本身作为二进制文件的所有者。如果为docker二进制文件错误配置了setuid位,那么用户将能够以root身份执行docker。

(1)Container Escape Using the Docker Socket:如果/var/run/docker.sock作为volume挂载到容器上,那么容器中的进程可以完全访问主机上的docker。

(2)Sensitive Information:当容器可以访问/var/run/docker.sock时,用户可以查看现有容器的配置,其中可能包含一些敏感信息。

(3)Remote Access:如果没有配置docker API只监听本地主机,那么网络上的每个主机都可以访问docker,攻击者可以利用这种错误配置启动其他容器。

    文章中列举了一些最近的且已完全公开的可能在渗透测试期间使用的bug。

(1)CVE-2019-16884

(2)CVE-2019-13139

(3)CVE-2019-5736

(4)CVE-2019-5021

(5)CVE-2018-15664

(6)CVE-2018-9862

(7)CVE-2016-3697

    首先需要对目标系统执行侦查来收集数据,然后使用收集到的信息来识别弱点和漏洞。

(2)识别容器的操作系统(或者Docker镜像)

(3)识别主机操作系统:因为容器使用宿主的内核,所以可以使用内核版本来标识宿主信息,从而检测一些内核利用。

(4)读环境变量:环境变量是启动容器时与容器通信信息的一种方式。当一个容器启动时,环境变量被传递给它,这些变量通常包含密码和其他敏感信息。

(5)检查Capabilities:通过查看/proc/self/status来查看容器的内核功能。其中CapEff是当前功能的值,可以使用capsh工具从十六进制值获取功能列表。可以使用这个来检查是否有可以用来容器逃逸的功能。

(6)检查特权模式:如果容器以特权模式运行,它将获得所有功能,因此可以通过查看能力(0000003fffffffff是所有能力的表示)来检查是否以特权模式运行进程。

(7)检查volumes:卷中可能包含敏感信息,可以通过查看挂载的文件系统位置来查看。

(8)检查挂载的docker socket

(9)检查网络配置

(2)拥有docker使用权限的用户

(3)配置:/etc/docker/daemon或/etc/default/docker

(4)可获得的镜像和容器

(5)iptables规则:使用 iptables -vnL 和 iptables -t nat -vnL,可以看到默认表filter和nat的规则。所有关于docker容器的防火墙规则都在filter中的docker -user链中设置。

Kali Linux 无线渗透测试入门指南 第四章 WLAN 加密缺陷

即使做了最充分的预测,未来始终是不可预测的。WLAN 委员会设计了了 WEP 和 WPA 作为最简单的加密机制,但是,久而久之,这些机制拥有在现实世界中广泛公布和利用的缺陷。

WLAN 加密机制易受密码学攻击,这有相当长的历史了。这从 2000 年的 WEP 开始,它最后被完全破解。最近,攻击慢慢转向了 WPA。即使当前没有公开攻击方式用于在所有情况下破解 WPA,特殊情况下的攻击还是可行的。

WLAN 在空气中传输数据,所以保护数据的机密性是一种内在需求。使用加密是最佳方案。WLAN 委员会(IEEE 802.11)为数据加密指定了以下协议:

这一章中,我们会看一看每个加密协议,并演示针对它们的多种攻击。

WEP 协议在 2000 年发现漏洞,但是,诧异的是,它仍然被使用,并且接入点仍然自带 WEP 功能。

WEP 中有许多密码学缺陷,它们被 Walker,Arbaugh,Fluhrer,Martin,Shamir,KoreK,以及其它人发现。密码学立场上的评估超出了这本书的范围,并且涉及到复杂的数学。这一节中,我们会看一看如何使用 Kali 中便捷可用的工具来破解 WEP 加密。这包含整个 aircrack-ng 工具套件 -- airmon-ng , aireplay-ng , airodump-ng , aircrack-ng ,以及其它。

WEP 的基础缺陷是使用 RC4 和短的 IV 值,每 224 帧复用。虽然这本身是个大数,但是每 5000 个封包中还是有 50% 的几率重用四次。为了利用这个,我们尝试大量流量,是我们增加重用 IV 的可能性,从而比较两个使用相同密钥和 IV 加密的密文。

让我们首先在测试环境中建立 WEP,并且看看如何破解。

遵循以下指南来开始:

我们在环境中建立 WEP,并成功破解了 WEP 密钥。为了完成它,我们首先等待正常客户端连接到接入点。之后,我们使用 aireplay-ng 工具在网络上重放 ARP 封包。这会导致网络发送 ARP 重放封包,从而增加空中发送的数据封包数量。之后我们使用 aircrack-ng 工具,通过分析数据风暴的密码学缺陷来破解 WEP 密钥。

要注意我们也能够使用共享密钥验证绕过机制,来伪造接入点的验证,这会在后面的章节中学到。如果正常客户端离开了网络,这可以更方便一些。这会确保我们可以伪造验证和关联,并且继续将重放封包发送到网络。

在之前的练习中,如果正常客户端突然断开了网络,我们就不能重放封包,因为接入点会拒绝接受来自未关联客户端的封包。

你的挑战就是,使用即将在后面学到的共享密钥绕过伪造验证和授权,使你仍然能够将封包注入到网络中,并验证接入点是否接受和响应它们。

WPA 或者 WPA v1 主要使用 TKIP 加密算法。TKIP 用于改进 WEP,不需要完全新的硬件来运行。反之,WPA2 必须使用 AES-CCMP 算法来加密,这比 TKIP 更加强大和健壮。

WPA 和 WPA2 允许 基于 WAP 的验证,使用基于 RADIUS 服务器(企业)和预共享密钥(PSK)(个人)的验证模式。

WPA/WPA2 PSK 易受字典攻击。攻击所需的输入是客户端和接入点之间的四次 WPA 握手,以及包含常用口令的单词列表。之后,使用例如 Aircrack-ng 的工具,我们可以尝试破解 WPA/WPA2 PSK 口令。

四次握手的演示见下面:

WPA/WPA2 PSK 的原理是它导出了会话层面的密钥,叫做成对临时密钥(PTK),使用预共享密钥和五个其它参数 -- 网络 SSID、验证者 Nounce (ANounce)、申请者 Nounce (SNounce)、验证着 MAC 地址(接入点 MAC)、申请者 MAC 地址(WIFI 客户端 MAC)。密钥之后用于加密接入点和客户端之间的所有数据。

通过嗅探空气来窃取整个对话的攻击者,可以获得前面提到的全部五个参数。它唯一不能得到的东西就是预共享密钥。所以,预共享密钥如何创建?它由用户提供的 WPA-PSK 口令以及 SSID 导出。这些东西的组合通过基于密码的密钥推导函数(PBKDF2)来发送,它的输出是 256 位的共享密钥。

在典型的 WPA/WPA2 PSK 字典攻击中,攻击者会使用可能口令的大量字典以及攻击工具。工具会从每个口令中导出 256 位的预共享密钥,并和其它参数(之前提到过)一起使用来创建 PTK。PTK 用于在握手包之一中验证信息完整性检查(MIC)。如果匹配,从字典中猜测的口令就正确,反之就不正确。

最后,如果授权网络的口令存在于字典中,它会被识别。这就是 WPA/WPA2 PSK 破解的工作原理。下面的图展示涉及到的步骤:

下个练习中,我们会看一看如何破解 WPA PSK 无线网络。使用 CCMP(AES)的WPA2-PSK 网络的破解步骤与之相同。

遵循以下指南来开始:

我们在接入点上设置了 WPA-PSK,使用常见口令: abcdefgh 。之后我们使用解除验证攻击,让正常客户端重新连接到接入点。当我们重新连接时,我们捕获了客户端和接入点之间的 WPA 四次握手。

因为 WPA-PSK 易受字典攻击,我们向 Aircrack-ng 输入了包含 WPA 四次握手的捕获文件,以及常见口令的列表(以单词列表形式)。因为口令 abcdefgh 出现在单词列表中, Aircrack-ng 就能够破解 WPS-PSK 共享口令。要再次注意,在基于字典的 WPA 破解中,你的水平就等于你的字典。所以在你开始之前,编译一个大型并且详细的字典非常重要。通过 Kali 自带的字典,有时候可能不够,可能需要更多单词,尤其是考虑位置因素。

Cowpatty 是个同样使用字典攻击来破解 WPA-PSK 口令的工具。这个工具在 Kali 中自带。我将其留做练习,来让你使用 Cowpatty 破解 WPA-PSK 口令。

同样,设置不常见的口令,它不出现在你的字典中,并再次尝试。你现在再破解口令就不会成功了,无论使用 Aircrack-ng 还是 Cowpatty。

要注意,可以对 WPA2-PSK 网络执行相同攻击。我推荐你自己验证一下。

我们在上一节中看到,如果我们在字典中拥有正确的口令,破解个人 WPA 每次都会像魔法一样。所以,为什么我们不创建一个大型的详细字典,包含百万个常见密码和词组呢?这会帮助我们很多,并且多数情况都会最终破解出口令。这听起来不错,但是我们错过了一个核心组件 -- 所花费的时间。更多需要 CPU 和时间的计算之一就是使用 PSK 口令和 SSID 通过 PSKDF2 的预共享密钥。这个函数在输出 256 位的与共享密钥之前,计算超过 4096 次二者组合的哈希。破解的下一步就是使用这个密钥以及四次握手中的参数来验证握手中的 MIC。这一步计算了非常大。同样,握手中的参数每次都会变化,于是这一步不能预先计算。所以,为了加速破解进程,我们需要使来自口令的与共享密钥的计算尽可能快。

我们可以通过预先计算与共享密钥,在 802.11 标准术语中也叫作成对主密钥(PMK)来加速。要注意,因为 SSID 也用于计算 PMK,使用相同口令和不同 SSID,我们会得到不同的 PMK。所以,PMK 取决于口令和 SSID。

下个练习中,我们会看看如何预先计算 PMK,并将其用于 WPA/WPA2 的破解。

我们可以遵循以下步骤来开始:

我们查看了多种不同工具和技巧来加速 WPA/WPA2-PSK 破解。主要原理就是对给定的 SSID 和字典中的口令列表预计算 PMK。

在所有我们做过的联系中,我们使用多种技巧破解了 WEP 和 WPA 密钥。我们能拿这些信息做什么呢?第一步就是使用密钥解密我们捕获的数据封包。

下一个练习中,我们会在相同的我们所捕获的记录文件中解密 WEP 和 WPA 封包,使用我们破解得到的密钥。

遵循以下步骤来开始:

我们刚刚看到了如何使用 Airdecap-ng 解密 WEP 和 WPA/WPA2-PSK 加密封包。要注意,我们可以使用 Wireshark 做相同的事情。我们推荐你查阅 Wireshark 的文档来探索如何用它来完成。

我们也可以在破解网络密钥之后连接到授权网络。这在渗透测试过程中非常方便。使用破解的密钥登录授权网络,是你可以提供给客户的证明网络不安全的证据。

遵循以下步骤来开始:

我们连接到了 WEP 网络。

遵循以下步骤来开始:

默认的 WIFI 工具 iwconfig 不能用于连接 WPA/WPA2 网络。实际上的工具是 WPA_Supplicant 。这个实验中,我们看到如何使用它来连接 WPA 网络。

Q1 哪种封包用于封包重放?

Q2 WEP 什么时候能被破解?

Q3 WPA 什么时候能被破解?

这一章中,我们了解了 WLAN 加密。WEP 含有缺陷,无论 WEP 密钥是什么,使用足够的数据封包就能破解 WEP。WPA/WPA2 在密码学上不可破解;但是,在特殊的场景下,例如 WPA/WP2-PSK 中使用了弱口令,它就能够通过字典攻击来获得口令。

下一章中我们会看一看 WLAN 设施上的不同工具,例如伪造接入点,邪恶双生子,位反转攻击,以及其它。

什么项目需要用到源代码扫描、漏洞测试、渗透测试报告?

明确的说,只要有IT资产,都需要。

我们做安全评估有以下几点原因:为了合规、甲方要求、保证自身业务系统安全性等,很多开发企业给甲方交付时都会要求出具相应的安全报告,实际上不管甲方有没有要求你出具安全报告,都应该保证系统的安全性,如果后期遭遇入侵,不仅给甲方带来损失,自己也会有损失。

源代码审计、漏洞扫描、渗透测试是其中三种网络安全评估手段,根据客户实际情况和需求选择评估方法,报告只是对系统当下脆弱性现状的一个快照,是做过安全性检测的一种证明,所以只要有IT资产,都应该去进行网络安全评估,然后安全技术人员出具一份报告协助企业进行修复整改。

做等保测评会要求出具相关报告,以及日常相关部门的检查、甲方的要求、相关监管部门对部分企业的检查等也会用到。

Kali Linux 无线渗透测试入门指南 第六章 攻击客户端

多数渗透测试者似乎把全部注意力都放在 WLAN 设施上,而不会注意无线客户端。但是要注意,黑客也可以通过入侵无线客户端来获得授权网络的访问权。

这一章中,我们将注意力从 WLAN 设施转移到无线客户端。客户端可能是连接的,也可能是独立未连接的。我们会看一看以客户端为目标的几种攻击。

通常,当客户端例如笔记本电脑打开时,它会探测之前连接的网络。这些网络储存在列表中,在基于 Windows 的系统上叫做首选网络列表(PNL)。同时,除了这个列表之外,无线客户端会展示任何范围内的可用网络。

黑客可以执行一个或多个下列事情:

这些攻击都叫做蜜罐攻击,因为黑客的接入点和正常的接入点错误连接。

下个练习中,我们会执行这两种攻击。

遵循这些指南来开始:

我们刚刚使用来自客户端的探针列表来创建蜜罐,并使用和邻近接入点相同的 ESSID。在第一个例子中,客户端在搜索网络的时候,自动连接到了我们。第二个例子中,因为我们离客户端比真正的接入点更近,我们的信号强度就更高,所以客户端连接到了我们。

在上一个练习中,如果客户端不自动连接到我们,我们能做什么呢?我们需要发送解除验证封包来打破正常的客户端到接入点的链接,之后如果我们的信号强度更高,客户端会连接到我们的伪造接入点上。通过将客户端连接到正常接入点,之后强迫它连接蜜罐来尝试它。

在蜜罐攻击中,我们注意到客户端会持续探测它们之前连接到的 SSID。如果客户端已经使用 WEP 连接到接入点,例如 Windows 的操作系统会缓存和储存 WEP 密钥。下一个客户端连接到相同接入点时,Windows 无线配置管理器就会自动使用储存的密钥。

Caffe Latte 攻击由 Vivek 发明,它是这本书的作者之一,并且在 Toorcon 9, San Diego, USA 上演示。Caffe Latte 攻击是一种 WEP 攻击,允许黑客仅仅使用客户端,获取授权网络的 WEP 密钥。这个攻击并不需要客户端距离授权 WEP 非常近。它可以从单独的客户端上破解 WEP 密钥。

在下一个练习中,我们将使用 Caffe Latte 攻击从客户端获取网络的 WEP 密钥。

遵循这些指南来开始:

我们成功从无线客户端获得了 WEP 密钥,不需要任何真实的接入点,或者在附近存在。这就是 Caffe Latte 攻击的力量。

基本上,WEP 接入点不需要验证客户端是否知道 WEP 密钥来获得加密后的流量。在连接在新的网络时,流量的第一部分总是会发送给路由器,它是 ARP 请求来询问 IP。

这个攻击的原理是,使用我们创建的伪造接入点反转和重放由无线客户端发送的 ARP 包。这些位反转的 ARP 请求封包导致了无线客户端发送更多 ARP 响应封包。

位反转接收加密值,并将其自改来创建不同的加密值。这里,我们可以接收加密 ARP 请求并创建高精确度的 ARP 响应。一旦我们发回了有效的 ARP 响应,我们可以一次又一次地重放这个值,来生成我们解密 WEP 密钥所需的流量。

要注意,所有这些封包都是用储存在客户端的 WEP 密钥加密。一旦我们得到了大量的这类封包, aircrack-NG 就能够轻易恢复出 WEP 密钥。

尝试修改 WEP 密钥并且重放攻击。这是个有难度的攻击,并且需要一些练习来成功实施。使用 Wireshark 检验无线网络上的流量是个好主意。

我们已经在之前的章节中看到了接入点上下文中的解除验证攻击,这一章中,我们会在客户端上下文中探索这种攻击。

下一个实验中,我们会发送解除验证封包给客户端并且破坏已经建立的接入点和客户端之间的连接。

遵循这些指南来开始:

我们刚刚看到了如何使用解除验证帧,选项性断开无线客户端到接入点的连接,即使使用了 WEP/WPA/WPA2 加密方式。这仅仅通过发送解除验证封包给接入点来完成 -- 客户端偶对,而不是发送广播解除验证封包给整个网络。

在上一个练习中,我们使用了解除验证攻击来破解连接。尝试使用解除关联访问来破坏客户端和接入点之间的连接。

我们已经看到了如何实施 Caffe Latte 攻击。Hirte 攻击扩展自 Caffe Latte 攻击,使用脆片机制并允许几乎任何封包的使用。

Hirte 攻击的更多信息请见 Aircrack-ng 的官网: http:// 。

我们现在使用 aircrack-ng 来在相同客户端上实施 Hirte 攻击。

遵循这些指南来开始:

我们对 WEP 客户端实施了 Hirte 攻击,客户端是隔离的,并远离授权网络。我们使用和 Caffe Latte 攻击相同的方式来破解密钥。

我们推荐你在客户端上设置不同的 WEP 密钥并多次尝试这个练习来获得自信。你可能会注意你需要多次重新连接客户端来使其生效。

在第四章中,我们看到了如何使用 airecrack-ng 来破解 WPA/WPA2 PSK,基本原理是捕获四次 WPA 握手,之后加载字典攻击。

关键问题是:可不可以仅仅使用客户端来破解 WPA,在没有接入点的情况下?

让我们再看一看 WPA 破解练习:

为了破解 WPA,我们需要来自四次握手的四个参数 -- 验证方的 Nounce,请求方的 Nounce,验证方的 MAC,请求方的 MAC。现在有趣的是,我们不需要握手中的全部四个封包来提取这些信息。我们可以只从封包 1 和 2,或 2 和 3 中提取。

为了破解 WPA-PSK,我们需要启动 WPA-PSK 蜜罐,并且当客户端连接时,只有消息 1 和 2 会发送。由于我们并不知道口令,我们就不能发送消息 3。但是,消息 1 和 2 包含所有密钥破解所需的信息:

我们能够只通过客户端破解 WPA。这是因为,即使只拥有前两个封包,我们也能获得针对握手的字典攻击的全部所需信息。

我们推荐你在客户端设置不同的 WPA 密钥,并且多次尝试这个练习来蝴蝶自信。你会注意到你需要多次重新连接客户端来使其生效。

Q1 Caffe Latte 攻击涉及到哪种加密?

Q2 蜜罐接入点通常使用哪种加密?

Q3 下列哪个攻击是 DoS 攻击?

Q4 Caffe Latte 攻击需要什么?

这一章中,我们了解了甚至是无线客户端也容易受到攻击。这包括蜜罐和其它错误关联攻击。Caffe Latte 攻击用于从无线客户端获得密钥;解除验证和解除关联攻击导致拒绝服务;Hirte 攻击是从漫游客户端获得 WEP 密钥的替代方案;最后,我们仅仅使用客户端破解了 WPA 个人口令。

下一章中,我们会使用目前为止学到的东西,在客户端和设施端实施多种高级无线攻击。所以,赶紧翻过这一页,进入下一章吧!

0条大神的评论

发表评论